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Abstract. We consider the possibility that photons of noncommutative U(1) gauge theory can make bound
states. Using the potential model, developed based on the constituent gluon picture of QCD glue-balls,
arguments are presented in favor of the existence of these bound states. The basic ingredient of the potential
model is that the self-interacting massless gauge particles may get mass by the inclusion of non-perturbative
effects.

PACS. 02.40.Gh, 11.10.Nx, 12.20.-m

1 Introduction

In Abelian gauge theories on ordinary space-time, there is
no self-coupling between the gauge fields. The best known
example is the quantum theory of the interaction between
electric charges and photons. The situation is different in
non-Abelian theories, and due to the commutator term in
the field strength, these theories entail a direct interac-
tion between the quanta of gauge fields. It is now widely
believed that the strong interaction is described by a non-
Abelian gauge theory accompanied with proper matter
fields, quarks, the so-called QCD. As gluons are the quanta
of QCD gauge field, from the very beginning the possibil-
ity was considered that gluons can make bound states free
from valance quarks, the so-called glue-balls. Although the
properties of glue-balls have been studied for a long time,
their existence have not still been proved experimentally.

Recently great interest has grown in the study of
field theories on spaces whose coordinates do not com-
mute. These spaces, as well as the field theories defined
on them, are known by the names of non-commutative
spaces and theories. In contrast to U(1) gauge theory on
ordinary space-time, as we briefly review in next section,
the non-commutative version of the theory involves direct
interactions between photons. Interestingly one finds the
situation to be very reminiscent of that of non-Abelian
gauge theories, and then the question is whether there
are some kinds of bound states in analogy with glue-balls
of QCD, which here might be called “photo-balls”. It is
this question that we consider in this work. Our approach
to study photo-balls is based on one of the methods that

a e-mail: fatho@mail.cern.ch
b e-mail: jabolfazl@iasbs.ac.ir

has been developed for glue-balls. As glue-balls are non-
perturbative in nature, there is still no systematic way
for the calculation of their properties from the first prin-
ciples of QCD. Instead, over the years many approaches
have been developed for extracting the glue-ball’s prop-
erties, though each approach is based on expectations or
estimate calculations.

Among many others, one approach for studying the
properties of glue-balls has been the so-called constituent
gluon model. In any study of bound states of gluons,
one encounters a situation in which gluons, though at
first they were introduced as massless to the Lagrangian,
are bound and do not disjoint to propagate to infinity.
Correspondingly, it is argued that quantum fluctuations
around a charged particle, that should be treated non-
perturbatively in QCD, can make an accompanied cloud
for it, causing a dynamically generated mass [1,2]. Accord-
ingly, it appears to be very useful to define constituent
quarks and gluons, for which we assume a mass of the or-
der of bound states of the theory, while their Lagrangian
counterparts may be massless or almost massless. As ex-
tracting the masses of constituent particles from first prin-
ciples has not yet been done in a satisfactory way, the best
evaluations come from estimations based on general con-
siderations, phenomenology or lattice calculations.

Once one accepts that a glue-ball is a bound state
of constituent gluons, the question is what the effective
theory is that captures the interaction between them.
One approach is to consider constituent gluons as mas-
sive quanta of an effective gauge theory. It needs some
kinds of proof, but hopefully this effective gauge theory
has the same qualitative features as the true (massless)
theory, but in the non-perturbative regime [1,2]. Since it is



236 A.H. Fatollahi, A. Jafari: On bound states of photons in noncommutative U(1) gauge theory

believed that the main contribution to the mass of a glue-
ball is coming from the constituent masses of gluons, it is
expected that constituent gluons move non-relativistically
inside the glue-ball, and so perturbative calculations for
finding the effective potential should be done in the non-
relativistic regime. Having the effective potential at hand,
by studying the Schrödinger-type equations, one can make
estimations about the mass or size of glue-balls. It is the
heart of the potential model approach for studying the
properties of the glue-balls [3–5].

There are two related issues when we are considering
the effective gauge theory of constituent gluons as massive
vector particles. First, it is known that the gauge symme-
try is lost via the mass term, and the second is that mas-
sive gauge theories are known to be perturbatively non-
renormalizable. Here we give comments on these issues [1,
2]. The non-renormalizability of massive gauge theories is
under this assumption that the mass in the theory ap-
pears as a fixed parameter, surviving at large momentum.
In fact the insufficient decrease of the propagator of a
massive vector particle at large momentum, due to simple
power counting, suggests that the theory cannot be renor-
malizable. But the situation might be different in a theory
with constituent mass. At very large momentum, where
the coupling constant is small due to asymptotic freedom,
the perturbation is valid and gluons appear as massless
particles. So the mass of a constituent gluon, which is
generated dynamically, depends on the momentum and
vanishes at large momentum. In a theory for gluons, it is
argued that if one can keep the dependence of constituent
mass on momentum, which of course is possible only by
including the non-perturbative effects, the theory may ap-
pear to be non-perturbatively renormalizable.

Although the argument above is for a model involv-
ing dynamically generated mass, due to lack of a system-
atic treatment of non-perturbative effects, much can be
learned via a kinematical description of the gluon mass [2];
this is to assume the mass as a fixed parameter, though a
problem still remains with local gauge symmetry. To over-
come this problem, there is a prescription that we review
briefly below. The starting point for the QCD case is the
Lagrangian density [1,2]

L = −1
4
Tr (FµνFµν)

+
1
2
m2Tr

(
Aµ − 1

g
V (ϕ)∂µV

†(ϕ)
)2

, (1)

in which

V (ϕ) = exp

[
i
2

∑
a

T aϕa

]
(2)

and Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], with [T a, T b] =
ifab

c T c. The action is invariant under

A′
µ = UAµU

−1 +
1
g
U∂µU

−1, V (ϕ′) = UV (ϕ), (3)

in which U = U(x) is the unitary matrix defining the
transformation. Now we see that, although the gauge fields

have got mass, the local symmetry is kept. Of course we
mention that giving mass is done paying the price of in-
troducing extra scalar fields. We have another example of
this observation in the spontaneous symmetry breaking
mechanism, in which we are left with Goldstone bosons.
In fact, these extra scalar fields, just like their Goldstone
boson counterparts, do not appear in the S-matrix, i.e. as
external legs of diagrams. One can insert the scalar fields
into the Lagrangian via a power series solution in g [1,2]:

ϕa = g
1
�
∂ ·Aa − g2[· · · ]a, (4)

getting a non-local but still gauge invariant theory involv-
ing only Aµ’s. This mechanism has been used for the case
of a constituent gluon description of QCD glue-balls [3–
5], and here we use it for photo-balls of non-commutative
U(1) theory.

As mentioned above the extra scalars do not appear as
external legs of diagrams, but the situation is even simpler
as far as one considers just the tree diagrams, in which
one can ignore the scalars. So for tree diagrams, and in a
proper gauge, the Lagrangian density in use is practically
[2,4,5]

L = −1
4
F aµνF a

µν +
1
2
m2AaµAa

µ, (5)

simply as a gauge theory for massive gluons.
In the non-relativistic limit the potential can be read

off from the total invariant amplitude Mfi via the Fourier
transform [3–5]

V (r) =
∫

d3q

8π3

ieiq·r

4
√
E1E2E3E4

iMfi, (6)

in which q is the momentum transferred between the in-
coming particles. The total invariant amplitude gets a con-
tribution at tree level from the s-, t- and u-channels, and
the so-called seagull (s.g.) diagram, coming from the four-
gluon vertex of QCD [3–5]. In the non-relativistic limit it
can be shown that the s-channel’s contribution is negligi-
ble, so one gets the final expression [3–5]

iMfi =
ig2facef bde

q2 +m2

× (
4m2 + 3q2 − 2S2q2 + 2(S · q)2 + 6iS · (q × pi)

)
− ig2

(
fabefcde − facef bde

(
1
2
S2 − 2

))
. (7)

The organization of the rest of this work is as follows. In
Sect. 2 we review some basic features of canonical non-
commutative spaces, and also the field theories defined on
them, specially non-commutative U(1) gauge theory. We
also make remarks on some aspects of non-commutative
U(1) gauge theory that make this theory to some extent
similar to QCD. Section 3 mainly contains the dynamics
of photons under the effective potential obtained in Ap-
pendix A. The existence proof of bound states is also pre-
sented in Sect. 3. Section 4 is for our conclusion and dis-
cussion. Appendix A is devoted to extracting the effective
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potential between massive photons, by studying the non-
relativistic behavior of their scattering. The distributional
derivatives are presented in Appendix B.

2 Non-commutative space-time
and U(1) theory

Over the last years a great deal of attention has been de-
voted to the formulation and the study of field theories
on non-commutative spaces. One of the original motiva-
tions has been to get finite field theories via the intrin-
sic regularizations which are encoded in some of the non-
commutative spaces [6]. The other motivation goes back
to the natural appearance of non-commutative spaces in
some areas of physics, and the recent one in string theory.
It has been understood that string theory involves some
kinds of non-commutativities; two examples are
(1) the coordinates of bound states of N D-branes are pre-
sented by N ×N Hermitian matrices [7], and
(2) the longitudinal directions of D-branes in the presence
of a B-field background appear to be non-commutative, as
is seen by the ends of open strings [8–10]. In the latter case
for a constant background one simply gets the canonical
non-commutative space-time, introduced by the commu-
tation relations for coordinates as follows:

[x̂µ, x̂ν ] = iθµν . (8)

Since the coordinates do not commute, any definition of
functions or fields should be performed under a prescrip-
tion for ordering of the coordinates, and one choice can
be the symmetric one, the so-called Weyl ordering. To
any function f(x) on ordinary space, one can assign an
operator Ôf by

Ôf (x̂) :=
1

(2π)n

∫
dnkf̃(k)e−ik·x̂, (9)

in which f̃(k) is the Fourier transform of f(x) defined by

f̃(k) =
∫

dnxf(x)eik·x. (10)

Due to the presence of the phase e−ik·x̂ in the definition of
Ôf , we recover the Weyl prescription for the coordinates.
In a reverse way we also can assign to any symmetrized
operator a function or field living on the non-commutative
plane. Also, we can assign to the product of any two op-
erators Ôf and Ôg another operator by

Ôf · Ôg =: Ôf�g, (11)

in which f and g are multiplied under the so-called �-
product defined by

(f � g)(x) = exp
(

iθµν

2
∂xµ∂yν

)
f(x)g(y) |y=x . (12)

By all this one learns how to define physical theories
on non-commutative space-time, and eventually it ap-
pears that the non-commutative field theories are defined

by actions that are essentially the same as in ordinary
space-time, with the exception that the products between
fields are replaced by the �-product; see [11] for a re-
view. Though the �-product itself is not commutative (i.e.,
f � g �= g � f) the following identities make some of the
calculations easier:∫

f � gdnx =
∫
g � fdnx =

∫
fgdnx,∫

f � g � hdnx =
∫
f(g � h)dnx =

∫
(f � g)hdnx,∫

f � g � hdnx =
∫
h � f � gdnx =

∫
g � h � fdnx.

By the former two ones we see that in integrands always
one of the stars can be removed. Besides it can be seen
that the �-product is associative, i.e., f �g�h = (f �g)�h =
f �(g�h), and so it is not important which two ones should
be multiplied first.

The pure gauge field sector of non-commutative U(1)
theory is defined by the action

Sgauge−field = −1
4

∫
d4xFµν � F

µν

= −1
4

∫
d4xFµνF

µν , (13)

in which the field strength Fµν is

Fµν = ∂µAν(x) − ∂νAµ(x) − ie[Aµ(x), Aν(x)]�; (14)

by definition [f, g]� = f �g−g �f . We mention [xµ, xν ]� =
iθµν . The action above is invariant under local gauge sym-
metry transformations:

A′
µ(x) = U � Aµ(x) � U−1 +

i
e
U � ∂µU

−1, (15)

in which U = U(x) is the �-phase, defined by the function
λ(x) via the �-exponential:

U(x) = exp�(iλ) = 1 + iλ− 1
2
λ � λ+ · · · , (16)

U � U−1 = U−1 � U = 1, (17)

in which U−1 = exp�(−iλ). Under the above transforma-
tion, the field strength transforms as

Fµν −→ F ′
µν = U � Fµν � U

−1. (18)

We mention that the transformations of the gauge field
as well as the field strength look like those of non-
Abelian gauge theories. Besides we see that the action
contains terms which are responsible for the interaction
between the gauge particles, again as the situation we
have in non-Abelian gauge theories. We see how the non-
commutativity of coordinates induces properties of the
fields and their transformations, as if they belonged to
a non-Abelian theory; the subject of how the characters
of coordinates and fields may be related to each other is
discussed in [12]. These observations make it reasonable to



238 A.H. Fatollahi, A. Jafari: On bound states of photons in noncommutative U(1) gauge theory

study whether and how the photons can make up bound
states in such a theory.

There is another observation that promotes the formal
similarities of non-commutative U(1) and non-Abelian
theories as to their behaviors; that is, the negative
sign of the β-function, which makes manifest that non-
commutative pure U(1) gauge theory is asymptotically
free [13,14]. By this it is more reasonable to see if the
techniques developed for QCD purposes can also be used
for non-commutative U(1) theory.

The phenomenological implications of possible non-
commutative coordinates have been the subject of a very
large number of research publications in the last years.
Among many others, here we can give just a brief list of
works, specially those concerning the phenomenological
implications of non-commutative U(1) theory. The effect
of the non-commutativity of space-time is studied for pos-
sible modifications that may appear in the high energy
scattering amplitudes of particles [15], in the energy lev-
els of light atoms [16,17], and the anomalous magnetic
moment of the electron [18]. The ultra-high energy scat-
tering of massless photons of non-commutative U(1) the-
ory is considered in [19] and the tiny change in the total
amplitude is obtained as a function of the total energy.
Some other interesting features of non-commutative ED
and QED are discussed in [20]. The issue of the formation
of new bound states by space-time non-commutativity has
been considered in [21].

3 On the existence of bound states

Having the effective potential, the starting point for study-
ing the bound state problem is the Schrödinger-type equa-
tion by the Hamiltonian:

H = 2m+H2b, (19)

in which m is the constituent mass, and H2b is for the
Hamiltonian capturing the dynamics of a two-body sys-
tem. For example, in the glue-ball case H2b usually con-
sists three parts: the kinetic term, the potential term com-
ing from perturbative calculations and the string poten-
tial. The string potential usually is taken in the form
Vstring = 2m(1 − e−βr), in which β is related to the ten-
sion of string stretched between the gluons. The formation
of strings is expected from simulations on lattice, as well
as the confinement hypothesis [3–5]. Due to lack of an-
alytical solutions, approximation methods, specially the
variational method, appear to be practically useful [3–5].
We mention that without any reliable estimation of the
value of the constituent mass, all efforts for the evalua-
tion of bound state properties, such as the mass and size,
do not get any definitive result. There have been lots of
theoretical and numerical efforts, like those done using the
lattice version of the theory, together with phenomenolog-
ical expectations, to estimate the mass of the constituent
gluons.

In Appendix A an effective potential between two pho-
tons is obtained based on the constituent picture of glue-

balls described in the Introduction. According to this pic-
ture, as we expect that in bound states gluons appear to
be massive due to non-perturbative effects, the effective
theory for studying the dynamics of gluons practically is
a massive gauge theory, as far as one is concerned with
tree diagrams. Then by studying the non-relativistic limit
of the scattering amplitude between two massive gluons
one can extract an effective potential between scattered
particles. This is the same approach as we use for ex-
tracting an effective potential between photons of the non-
commutative theory.

Comparing to the case with glue-balls, the situation
is more difficult in any study of photo-balls of non-
commutative U(1) theory. First, by the present experi-
mental data we just can suggest an upper limit for non-
commutative effects, leaving θ unspecified. Second, at
present neither can we say anything about the value of
constituent mass, nor about how it varies with other pa-
rameters, specially θ. In this sense, no study can yield a
definitive result or suggestion for the quantities we like to
know of photo-balls.

Here we try to formulate the dynamics based on the
effective potential obtained in Appendix A. Based on this
formulation, we specially present a proof of the existence
of the bound states. Since the issue of the possible forma-
tion of string-like objects in non-commutative U(1) the-
ory is not in a conclusive situation, we do not consider
a string potential in this work. We recall that by includ-
ing the string potential the existence proof of bound states
would be a trivial task. Also as the potential (A.20) is very
complicated, for the study of the possible bound states,
we restrict ourselves here to the zero total-spin case, the
S = 0 case; we also ignore the terms coming from the
distributional derivatives, the so-called D.D. terms. So we
have the potential (A.21), that is,

V S=0
2γ (r) (20)

=
e2

4
e−mr

4π

[
−λ2mr + 1

r3
+ (λ · r̂)2m

2r2 + 3mr + 3
r3

]
,

in which we have the vector λ = 1
2p×θ, with p as the mo-

mentum of one of the photons in the center-of-mass frame,
and θ as a vector built up from the non-commutative ten-
sor θij ; see Appendix A. m is the supposed constituent
mass of the photons. The interpretation of potential above
as the potential between two electric dipoles in a the-
ory with massive exchange particles is presented in Ap-
pendix A. For the sake of definiteness, we take the vector
θ in the z direction, that is θ = θz. It is more convenient
to work in cylindrical coordinates (ρ, φ, z), in which the
kinetic energy, recalling that the effective mass in relative
motion is m/2, is T = 1

2
m
2 (ρ̇2 + ρ2φ̇2 + ż2). Then we have

λ2 =
1
4

(
θ2p2 − (θ · p)2

)
=

1
4
θ2(p2

x + p2
y) =

1
16
m2θ2(ρ̇2 + ρ2φ̇2), (21)

and also

(λ · r̂)2 =
1
r2

(λ · r)2 =
1

16r2
m2θ2ρ4φ̇2, (22)
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in which r is the distance between two photons, r =√
ρ2 + z2. We see that, while the contribution coming

from the velocity ρ̇ always yields an attractive force, the
contribution from the angular velocity φ̇ depends on the
ratio ρ2/r2; it could be attractive or repulsive. In fact the
ratio ρ2/r2, as representing how much the photons move
off from the plane z = 0, also determines the relative ori-
entation between r and the components of the electric
dipoles generated due to the velocity φ̇. We recall that
the relative orientation of dipoles and the position vector
appears in the dipole–dipole potential (A.22). By all this
we have the Lagrangian

L = T − V

=
1
4
m [1 + af1(r)] ρ̇2 +

1
4
mż2

+
1
4
mρ2 [

1 + a
(
f1(r) − ρ2f2(r)

)]
φ̇2, (23)

in which a = e2

64πmθ
2 is a constant, and

f1(r) = e−mrmr + 1
r3

,

f2(r) = −1
r

∂f1
∂r

= e−mrm
2r2 + 3mr + 3

r5
. (24)

We mention that the first two terms are positive definite,
while the third one can be negative, zero and positive. The
coordinate φ is cyclic, and hence its momentum, given by

pφ =
∂L

∂φ̇
=

1
2
mρ2 [

1 + a
(
f1(r) − ρ2f2(r)

)]
φ̇ = K,(25)

is a conserved quantity, that we call K; we see later that in
quantum theory K should be an integer. One can find the
effective theory for the coordinates ρ and z, by eliminating
φ̇ by using the Routhian R [25], as follows:

Lρz = −R
= L− φ̇pφ

=
1
4
m [1 + af1(r)] ρ̇2 +

1
4
mż2

− K2

mρ2 [1 + a (f1(r) − ρ2f2(r))]
, (26)

in which we recognize the potential

Veff(ρ, z) =
K2

mρ2 [1 + a (f1(r) − ρ2f2(r))]
. (27)

It is useful to mention the properties of Veff .
(1) It goes to +∞ for ρ = 0 and z �= 0.
(2) It is 0 on ρ = z = 0.
(3) It goes to ±∞ around the curve g(ρ, z) := 1 +
a

(
f1(r) − ρ2f2(r)

)
= 0.

In Fig. 3 we have presented three plots of Veff in the ρz-
plane for m = a = 1, m = 10a = 10, and a = 10m = 10.
We see that Veff goes to −∞ and +∞ inside and outside
the regions defined by the curve g(ρ, z) = 0, respectively.
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Fig. 1. Plots of Veff , for m = a = 1, m = 10a = 10, and
a = 10m = 10

We mention also, as the plots suggest, that the dynamics
on the z ≡ 0-plane is unstable; that is, a small velocity
ż �= 0 hustles particles out of the z = 0-plane.

Before starting the discussion of quantum theory, let
us have another look at the original Lagrangian (23). We
mention that the Lagrangian is in the form of a pure ki-
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netic term, represented by means of a metric gij(x):

L =
1
2
m

2
gij(x)ẋiẋj , (28)

in which xi = (ρ, φ, z), and

g11(ρ, z) = 1 + af1(r),
g22(ρ, z) = ρ2 [

1 + a
(
f1(r) − ρ2f2(r)

)]
,

g33 = 1, gij = 0, i �= j. (29)

We remind the reader that, although the Lagrangian is
looking like a pure kinetic term, since one of the compo-
nents of metric, g22, changes sign, we can have negative
energy states – among them there are bound states. By
this interpretation of the Lagrangian, the Hamiltonian of
the quantum theory is simply gained:

H2b = − 1
m

∇2 = − 1
m

1√| det g|∂i

[√
| det g|gij∂j

]
,(30)

in which det g is the determinant of gij . As gij is diagonal,
gij = 1/gij , for gij �= 0. We mention that the components
of the metric are independent of the coordinate φ. Using
the separation of variables, we choose the wave function
Ψ(ρ, z, φ) = ψ(ρ, z)Φ(φ), with Φ(φ) ∝ eilφ, and due to
the single-valuedness of the wave function, l should be an
integer. We have finally

H l
2b = − 1

m

{
1√

g11|g22|
∂ρ

[√
|g22|
g11

∂ρ

]

+
1√

g11|g22|
∂z

[√
g11|g22|∂z

]
− l2

g22

}
, (31)

in which H l
2b means the Hamiltonian for states with a

specified value for l. By comparison, we see that the clas-
sical counterpart of the integer number l is K. Also we
mention that l2/(mg22), as expected, is for Veff in the
quantum theory. Now let us choose a trial function f(ρ, z)
that vanishes outside the curve g(ρ, z) = 0. We consider
the quantity

〈f ∣∣H l
2b

∣∣f〉
=

∫
inside g(ρ,z)=0

f∗(ρ, z)
(
H l

2bf(ρ, z)
) √

| det g|dρdz

= A1,f − l2A2,f =: Ef,l, (32)

in which A1,f and A2,f are two numbers independent of
l. We mention that, since f(ρ, z) vanishes for r → ∞, the
contribution coming from the first two terms of H l

2b, tak-
ing into account the minus sign in front of it, is positive.
The contribution from the last term of H l

2b, recalling the
definition of f(ρ, z), is negative. So for this kind of trial
function, A1,f and A2,f are positive. Here we make a com-
ment on the existence of bound states, at least for some
ranges of l. We mention that for sufficiently large values of
l, for a fixed trial function f(ρ, z), Ef,l can be negative. In
fact one can, by increasing l, lower Ef,l as much as wants.

Now, by a variational theorem we know that Ef,l is an
upper limit for the lowest energy, and so we expect that
for states with sufficient large l, there should be negative
eigenvalues for Hamiltonian H l

2b. Denoting these negative
eigenvalues by En,l, and the corresponding eigenfunctions
by ψn,l(ρ, z), with n for the possible quantum numbers,
we have

∇̃2ψn,l(ρ, z) =
(
l2

g22
−mEn,l

)
ψn,l(ρ, z), (33)

with ∇̃2 as the Laplacian in the ρz-plane, given by

∇̃2 =
1√

g11|g22|
∂ρ

[√
|g22|
g11

∂ρ

]

+
1√

g11|g22|
∂z

[√
g11|g22|∂z

]
. (34)

Now, since outside the curve g(ρ, z) = 0 the potential Veff
is positive definite, the coefficient of ψn,l in the right-hand
side is also positive. As r → ∞ belongs to the outside of
the curve g(ρ, z) = 0, by the properties of the spectrum of
∇̃2, we expect ψn,l|r→∞ → 0, that is, ψn,l is representing
a bound state. Physically we expect that for the negative
eigenvalues, the wave function should be localized along
the well inside the curve g(ρ, z) = 0, as g22 is approaching
zero from below.

The manner we proved the existence of bound states
can be used, by increasing l, for reasoning that there is no
lowest energy state: the eigenvalues are unbounded from
below. We recall that the potential (A.20) is obtained un-
der the assumption that λ 
 r. As λ = 1

2p × θ, we see
that for large values of the momentum, λ may be com-
parable, and even larger than r. One situation that might
invalidate the assumption λ 
 r can happen for very large
values of l, corresponding to a large value of K in classical
theory. In such cases one should consider the original po-
tential (A.17). We recall that, although the absolute least
energy is meaningless, to be found under the approxima-
tion λ 
 r, the least value of energy is still meaningful for
states with a specified value for l.

The other issue concerns states with eigenvalues big-
ger than the maximum of the potential inside the curve
g(ρ, z) = 0. We mention that an infinite tall wall has sur-
rounded the inside region, and the question is if the wall
can make for the possibility of forming bound states. In
fact since the thickness of the wall behaves like 1/h, with
h as the height, by considerations coming from the WKB
approximation for the tunnelling effect, we expect that the
particles with positive energies can escape from the inside
region. This situation is similar to the situation in the one-
dimensional problem with potential V (x) = 1/(x−x0), for
which by the WKB method one finds a n expression with
a finite probability for tunnelling of positive energy parti-
cles.

As the final point, we make a comment on the possible
values of the spin and l. The state of a two-photon system
should be symmetric under the exchange of photons. A
two-photon system can have 0, 1 and 2 as total spins, as for
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the first and last ones the spin states are symmetric, and
for the second it is antisymmetric. Here the exchange of
two photons means z → −z and φ → φ+π. By considering
the spatial dependence of the wave function, we have the
following for the allowed spins and l:

S = 0, 2, l = 0, 2, 4, · · ·
S = 1, l = 1, 3, 5, · · · (35)

4 Conclusion and discussion

We mention that the transformations of the gauge field
as well as the field strength in a non-commutative space
look like those of non-Abelian gauge theories. Besides we
see that the action of non-commutative U(1) theory con-
tains terms which are responsible for the interaction be-
tween photons, again as in the situation that we have in
non-Abelian gauge theories. There is another observation
that promotes the formal similarities of non-commutative
and non-Abelian theories as to their behaviors, that is,
the negative sign of the β-function, which makes manifest
that these theories are asymptotically free [13,14]. The
above mentioned observations make it reasonable to study
whether and how the photons of non-commutative U(1)
theory can make bound states. Also these observations
make it reasonable to see if the techniques developed for
QCD purposes can also be used for non-commutative U(1)
theory. Here we used the so-called potential model, devel-
oped on the constituent gluon picture of QCD glue-balls.
The basic ingredient of the potential model is that the
self-interacting massless gauge particles may get a mass
by the inclusion of non-perturbative effects. By calculat-
ing the amplitude for the scattering process between two
massive photons, we extract the effective potential that
is expected to capture the dynamics of the constituent
photons. Using this effective potential, we formulate the
Hamiltonian dynamics, by which arguments are presented
in favor of the existence of photon bound states.

As possible photo-balls, like their glue-ball cousins, are
non-perturbative in nature, it is expected that the lattice
version of the non-commutative U(1) theory should ap-
pear as one of the natural ways to study a photo-ball’s
properties. It is remarkable that ordinary U(1) theory on
the lattice develops an area law, suggesting a stringy pic-
ture for the force, for two charged particles [27]. There
are suggestions for the lattice version of non-commutative
gauge theories [28]. Specially, the finite N version of the
theory is promising for numerical and simulation purposes.
Recently, there have been a few works reporting the pre-
liminaries results by the lattice version of the theories [29].
There are other suggestions for the non-perturbative def-
inition of the non-commutative U(1) gauge theory [30].

By the current experiments there has not been any
signal for possible non-commutativity. So the common
expectation is that the evidence for non-commutativity,
if any, should modify the processes that occur at ener-
gies much higher than those presently available. This is
why by present experimental data one can just suggest an
upper limit for non-commutative effects. There has been

another suggestion that non-commutativity effects may
appear due to applying of a sufficiently strong magnetic
field on samples containing moving charged particles. It
would be extremely interesting if the non-commutative
view would let us learn something new about relevant phe-
nomena [31].

Acknowledgements. A. H. F. is grateful to M. Khorrami for
very helpful discussions on the distributional derivatives, and
also for extremely useful discussions on the bound state prob-
lem.

Appendix A: Massive non-commutative U(1)
theory and effective potential
between photons

A.1 Massive photon–photon scattering amplitude

Here, following the procedure developed for the QCD case,
we give mass to the photons of non-commutative U(1)
theory. As described this is done by introducing an extra
scalar field, getting the Lagrangian density

L = Lgauge−field +
m2

2

(
Aµ +

i
e
∂µV (ϕ) � V −1(ϕ)

)2

�

,(A.1)

in which (· · · )2� = (· · · )�(· · · ), and V (ϕ) is the �-phase de-
fined by the scalar field ϕ; see (16). The action defined by
the above Lagrangian is invariant under transformations:

A′
µ(x) = U � Aµ(x) � U−1 +

i
e
U � ∂µU

−1,

V (ϕ′) = U � V (ϕ), (A.2)

in which U is the same in (15). Now we just list the Feyn-
man rules [2,14,18]. For the propagator one easily takes
the one for a massive vector field:

iDµν(p) =
−igµν

p2 −m2 +
ipµpν

(p2 −m2)m2 . (A.3)

In the non-relativistic limit we have for the momentum
and polarization vectors [4,5]

pµ =
(
m+

p2

2m
,p

)
, εµ =

(p · e
m

, e +
p · e
2m2 p

)
, (A.4)

in which e is a 3-vector satisfying e∗ · e = 1. From the
Lorentz condition [3–5], we have p · ε = pµεµ = 0. In this
work we assume for the signature of the metric gµν =
(+1,−1,−1,−1). As in this work we restrict ourselves to
tree diagrams, after removing one �, and by the Lorentz
condition, we practically are using the Lagrangian [2]

L = −1
4
FµνFµν +

1
2
m2AµAµ, (A.5)

with Fµν defined in (14). There are three- and four-photon
vertices given in Fig. 1. As in this work we consider non-
commutativity just in spatial directions, that is assuming
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Fig. 2. Three- and four-photon vertices of non-commutative
U(1) theory
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Fig. 3. s-channel, t-channel, and seagull diagrams

θ0i = 0 for i = 1, 2, 3, we have for the vertex functions [14,
18]

Γµ1µ2µ3
k1,k2,k3

= −2e sin
(

k1 � k2

2

)
× [(k1 − k2)µ3gµ1µ2 + (k2 − k3)µ1gµ2µ3

+(k3 − k1)µ2gµ3µ1 ] (A.6)

and

Γµ1µ2µ3µ4
k1,k2,k3,k4

= −4ie2
[
sin

(
k1 � k2

2

)
sin

(
k3 � k4

2

)
× (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ sin
(

k3 � k1

2

)
sin

(
k2 � k4

2

)
× (gµ1µ4gµ2µ3 − gµ1µ2gµ3µ4)

+ sin
(

k1 � k4

2

)
sin

(
k2 � k3

2

)
× (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)] , (A.7)

in which a � b ≡ θijaibj , and the momenta and indices
are given in Fig. 1. Also in each vertex energy-momentum
conservation should be understood.

Although there are four diagrams at tree level, those
coming from the s-, t- and u-channels, and the seagull
diagram (Fig. 2), when extracting the potential, by the
properly symmetrized wave function for identical parti-
cle systems, the “exchange” or “symmetry” diagrams are

automatically taken care of, causing that only one of the
t- and u-channels’ contributions should be added to the
others’ contributions [4].

Comparing QCD vertex functions with those of non-
commutative theory shows us that the only difference be-
tween two theories is in pre-factors. This is the cause that
those parts of the calculations concerning the kinematical
parts are similar to those done for glue-balls [3–5], and
consequently here we concentrate on differences between
two theories and results. First, exactly as in the QCD case,
the leading order contribution of the s-channel is negligi-
ble in the non-relativistic limit.

Now we come to the t-channel,

iMt
fi

= −4e2 sin
(

p1 � q
2

)
sin

(
p2 � q

2

)
× [gµλ(p1 + p3)ρ + gλρ(p1 − 2p3)µ

+gρµ(p3 − 2p1)λ]

× εµ1 ε
∗λ
3

−i
(
gρδ − qρqδ

m2

)
q2 −m2 εν2ε

∗σ
4 (A.8)

× [gνσ(p2 + p4)δ + gσδ(p2 − 2p4)ν

+gδν(p4 − 2p2)σ] ,

in which q = p3 −p1 = p2 −p4. We continue in the center-
of-mass frame, defined by

p1 = −p2 = pi,p3 = −p4 = pf ,q = pf − pi. (A.9)

The result in the non-relativistic limit is [3–5]

iMt
fi = 4ie2

sin2 (p�q
2

)
q2 +m2

× [
4m2 + 3q2 − 2S2q2 + 2(S · q)2 + 6iS · (q × p)

]
+ O(p2), (A.10)

in which S is the total spin operator for the two-photon
system. We mention that the kinematical dependence of
the t-channel amplitude, given by the terms [· · · ], not sur-
prisingly is exactly that for gluons, presented in (7). In
fact the only difference between the case of gluons and
photons in non-commutative U(1) theory, as mentioned
above, is in the pre-factor, originating from the difference
between the structure constants of the group that appear
in the vertex functions [14].

Now we come to the seagull diagram, with the contri-
bution

iMs.g.
fi = −4ie2εµ1 ε

ν
2ε

∗λ
3 ε∗σ

4 (A.11)

×
[
sin

(
p1 � p2

2

)
sin

(
p3 � p4

2

)
(gµλgνσ − gµσgνλ)

+ sin
(

p3 � p1

2

)
sin

(
p2 � p4

2

)
(gµνgλσ − gµσgνλ)

+ sin
(

p1 � p4

2

)
sin

(
p2 � p3

2

)
(gµνgµλ − gµλgνσ)

]
.
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By doing the manipulations we get

iMs.g.
fi = 8ie2 sin

(
p1 � p3

2

)
sin

(
p2 � p4

2

) (
1
2
S2 − 2

)
.

(A.12)

Now we mention that the contribution of the seagull chan-
nel, for a small non-commutativity parameter, is some-
thing proportional to (θp)2 p2 which is of the order of p2,
which we ignore. This observation is different from that for
QCD glue-balls: for them the contribution of the seagull
diagram is in zeroth order of momentum, and thus should
be kept. The seagull’s contribution appears to be in the
form of δ(r) in the potential.

A.2 Effective potential between photons

Before we proceed, we define the vector θ based on the
tensor θij by θi ≡ εijkθjk. By this vector we can write the
�-product as

a � b = θijaibj = ai 1
2
εlijθ

lbj

=
1
2
θ · (a × b) =

1
2
b · (θ × a). (A.13)

By this we have for the t-channel contribution

iMt
fi = 4ie2

sin2 ( 1
2q · λ

)
q2 +m2 Υ (q), (A.14)

in which λ = 1
2p×θ and Υ (q) = 4m2+3q2−2S2q2+2(S·

q)2 + 6iS · (q × p). By the total amplitude the potential
can be deduced using (6)

V2γ(r) = − e2

m2

∫
d3q

8π3

eiq·r

q2 +m2

× sin2
(

1
2
q · λ

)
Υ (q). (A.15)

By writing the exponential form of sin(...), and defining

U(R) :=
∫

d3q

8π3

eiq·R

q2 +m2 =
e−mR

4πR
, (A.16)

with R = |R|, and by q → −i∇, we have

V2γ(r) = − e2

4m2Υ (−i∇) [2U(r) − U(r+) − U(r−)] ,

(A.17)

with r± = r ± λ. We mention that, for λ = 0, the poten-
tial vanishes; this happens in the following cases:
(1) θ = 0,
(2) p = 0, and
(3) p ‖ θ. It is reasonable to see this behavior of the poten-
tial for small non-commutativity parameter, defined here

by λ 
 r and λm 
 1. In this limit, the first surviving
terms are given by

V2γ(r) =
e2

4m2Υ (−i∇)(λ · ∇)2U(r) +O(λ4). (A.18)

Recalling that for a function f(r), ∂if(r) = xi∇rf , with
∇r = r−1∂r, and using

(p × S) · r = (r × p) · S = L · S,
∇2U(r) = m2U(r) − δ(r), (A.19)

with L the total angular momentum, we get the expression
for the potential

V2γ(r) =
e2

4m2

{
m2 (

1 + 2S2) [
λ2∇r + (λ · r)2 ∇r∇r

]
− 2

[ [
S2λ2 + 2 (λ · S)2

]
∇r∇r

+ (λ · r)2 (S · r)2 ∇r∇r∇r∇r

+
[
4 (λ · S) (λ · r) (S · r) + λ2 (S · r)2 + S2 (λ · r)2

]
×∇r∇r∇r

]
+ 6

[[
λ2∇r∇r + (λ · r)2 ∇r∇r∇r

]
(L · S)

+2 (p × S) · λ (λ · r) ∇r∇r]}U(r)
+ D.D.+O(λ4), (A.20)

in which λ = |λ|, S = |S|, and D.D. is for the distri-
butional derivatives of the function U(r), containing a δ-
function and its derivatives; we calculate and present the
explicit expression of D.D. in Appendix B.

We now make some comments on the potential given
by (A.20). First, we mention that due to the r’s in the
inner products, the effective lowest power is r−5. Second,
the strength of the potential, through the definition of
λ, depends on the momentum. Third, let us consider the
spin-independent part of the potential, that is, setting S =
0,

V S=0
2γ (r) =

e2

4
e−mr

4π
(A.21)

×
[
−λ2mr + 1

r3
+ (λ · r̂)2m

2r2 + 3mr + 3
r3

]
.

We mention that the m = 0 limit of the above expression
is well defined. It is known that in non-commutative field
theories particles behave as electric dipoles [16,18,22–24].
The electric dipole depends on the strength of the non-
commutativity parameter as well as the momentum, and is
perpendicular to both of them; it is given by d = 1

4eθ×p.
For the two-photon system, in the center-of-mass frame,
for which p1 = −p2 = p, we have d1 = −d2 = d. The
potential for a system of two electric dipoles d1 and d2 is
given by

Vdipoles(r) =
1
4π

1
r3

[d1 · d2 − 3(d1 · r̂)(d2 · r̂)] . (A.22)
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We see that the two expressions (A.21) and (A.22) are
equivalent for m = 0 and d = 1

2eλ. In fact the expression
(A.21) is the potential of two anti-parallel dipoles in a the-
ory in which the potential of a charged particle is given by
the so-called Yukawa potential: V (r) = e

4πe−mr/r. In prin-
ciple, one could justify that the potential (A.20) is in fact
that for two anti-parallel dipoles, included by spin–orbit
and spin–dipole interactions in a Yukawa-type theory. Fi-
nally, we mention

λ · r =
1
2
(p × θ) · r =

1
2
θ · (r × p) =

1
2
θ · L, (A.23)

that can be inserted in the relevant parts of the potential
(A.20). It is the famous θ–L coupling, previously found in
studies concerning the implications of non-commutativity
in low energy phenomena [16,18,23].

Appendix B: Distributional derivatives

Here we calculate the distributional derivatives [26]. First
we consider ∂i∂j

e−mr

r . The distributional derivative can
be calculated by its effect on a test function φ(r):

〈∂i∂j
e−mr

r
, φ〉 := 〈e−mr

r
, ∂i∂jφ〉 =

∫
e−mr

r
∂i∂jφ(r)d3r

= lim
ε→0+

∫
r≥ε

e−mr

r
∂i∂jφ(r)d3r, (B.1)

in which d3r = r2drdΩ. The limit above does exist be-
cause the integral in the second line, due to r2 in d3r, is
finite. r = 0 is excluded from the last integral, and so we
can do integrations by parts:

Iij

= lim
ε→0+

[∫
r≥ε

∂i

(
e−mr

r
∂jφ

)
d3r −

∫
r≥ε

∂i
e−mr

r
∂jφd3r

]
= lim

ε→0+

[∫
r≥ε

∇ ·
(̂
ei

e−mr

r
∂jφ

)
d3r −

∫
r≥ε

∂i
e−mr

r
∂jφd3r

]
= lim

ε→0+

[∫
r=ε

e−mr

r
∂jφ(−êi · r̂)r2dΩ (B.2)

−
∫

r≥ε

∂i
e−mr

r
∂jφd3r

]
= lim

ε→0+

[
−

∫
r=ε

e−mr

r
∂jφnir

2dΩ −
∫

r≥ε

∂i
e−mr

r
∂jφd3r

]
,

in which êi is for a unit vector in the x, y and z direc-
tions, and r̂ = (n1, n2, n3). The first integral in last line is
proportional to ε and so vanishes in the limit. So we get

Iij = − lim
ε→0+

∫
r≥ε

∂i
e−mr

r
∂jφd3r. (B.3)

By repeating the steps above, we arrive at

Iij = −4π
3
φ(0)δij + lim

ε→0+

∫
r≥ε

φ∂i∂j
e−mr

r
d3r; (B.4)

for getting it we used ∂if(r) = ni∂rf(r), and also by keep-
ing the integrands to the first non-vanishing order in ε, and
using ∫

ninjdΩ =
4π
3
δij . (B.5)

The limit above exists, by using the fact that the value
of the function at the origin is constant and independent
from Ω = Ω(θ, ϕ), and recalling∫

(3ninj − δij)dΩ = 0. (B.6)

One can remove the limit by respecting the order of inte-
grations. By all this we get

∂i∂j
e−mr

r
→ −4π

3
δijδ(r) + pf

[
∂i∂j

e−mr

r

]
, (B.7)

in which “pf” stands for a pseudo-function, which here
simply means that in integrals the integration on a solid
angle should be done before a radial one.

By repeating the procedure above we obtain

∂i∂j∂k
e−mr

r
→ (B.8)

− 4π
5

[δij∂k + δjk∂i + δki∂j ] δ(r) + pf
[
∂i∂j∂k

e−mr

r

]
and

∂i∂j∂k∂l
e−mr

r
→

− 4π
15

[δijδkl + δikδjl + δilδjk] δ(r)

−10π
51

[δijδkl + δikδjl + δilδjk] ∇2δ(r)

− 20π
51

[δij∂k∂l + δik∂j∂l + δil∂j∂k + δkl∂i∂j

+δjl∂i∂k + δkj∂i∂l] δ(r)

+ pf
[
∂i∂j∂k∂l

e−mr

r

]
, (B.9)

in which again “pf” simply means that in integrals the
integration on a solid angle should be done before a radial
one. The combination ∇2∂i∂j is simply δkl∂i∂j∂k∂l.
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